Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
This paper presents a novel Verilog-A model for the Fermi velocity in Graphene Field-Effect Transistors (GFETs). The Fermi velocity is an important parameter associated with the energy spectrum of the delocalized bonds in graphene which impact the performance of a GFET. Unlike existing GFET models where the Fermi velocity is assumed to have a constant value, the proposed model considers carrier concentrations in the channel and gate dielectrics to create a closed-form solution for the Fermi velocity, a parameter previously demonstrated to vary based on these two factors. The proposed mathematical model is then adapted to Verilog-A for interfacing with computer-aided design (CAD) circuit simulators. To demonstrate the accuracy of the proposed model, the simulation results are compared to measured drain–source currents obtained from various GFET devices (including GFETs measured by authors). The measured results show good agreement with the values predicted using the proposed model (<±1%), demonstrating the superior accuracy of the model compared to other published Verilog-A-based models, especially around the Dirac point.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Additive methods for manufacturing materials have recently emerged, particularly for the fabrication of three‐dimensional architectures. Because of their long history in thin‐film etching and deposition, plasmas offer unique advantages for many of the materials and surface processes associated with additive manufacturing. Here, we review recent efforts that have been primarily focused on the direct writing of patterned structures and the post‐treatment of printed materials. Different configurations, materials, and applications are presented. Current challenges and a future outlook are also provided.more » « less
An official website of the United States government
